

Tetrahedron Letters 41 (2000) 7597-7600

TETRAHEDRON LETTERS

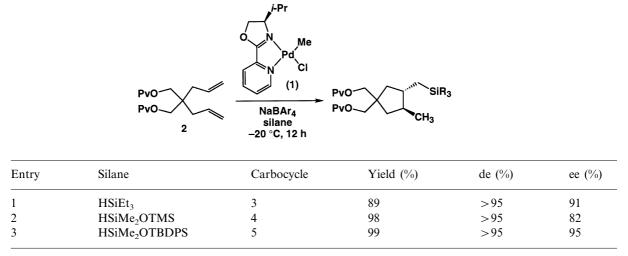
Asymmetric diene cyclization/hydrosilylation/oxidation employing 1-*tert*-butyl-3,3-dimethyl-1,1-diphenyldisiloxane

Tao Pei and Ross A. Widenhoefer*

P.M. Gross Chemical Laboratory, Duke University, Durham, NC 27708-0346, USA Received 1 August 2000; accepted 3 August 2000

Abstract

A 1:1 mixture of (N–N)Pd(Me)Cl [N–N=(R)-(+)-4-isopropyl-2-(2-pyridinyl)-2-oxazoline] (1) and NaBAr₄ [Ar=3,5-C₆H₃(CF₃)₂] catalyzed the asymmetric cyclization/hydrosilylation of functionalized 1,6-dienes with 1-*tert*-butyl-3,3-dimethyl-1,1-diphenyldisiloxane at -20°C to form silylated cyclopentanes in good yield with up to 95% ee. These silylated carbocycles underwent oxidative cleavage of the C–Si bond with H₂O₂ at room temperature to form the corresponding alcohols. © 2000 Elsevier Science Ltd. All rights reserved.


We have been investigating the cyclization/hydrosilylation of functionalized dienes catalyzed by mixtures of (N-N)Pd(Me)Cl [N-N=1,10-phenanthroline¹ or (R)-(+)-4-isopropyl-2-(2pyridinyl)-2-oxazoline (1)]² and NaBAr₄ [Ar=3,5-C₆H₃(CF₃)₂]. Our initial procedures required the use of HSiEt₃ to achieve efficient and general cyclization/hydrosilylation, and the resulting silvlated carbocycles were therefore resistant to oxidative C-Si bond cleavage.³ In response to this limitation, we recently identified pentamethyldisiloxane (HSiMe₂OTMS) as an effective and readily oxidized silane for use in palladium-catalyzed cyclization/hydrosilylation.⁴ Unfortunately, the enantioselectivity of asymmetric cyclization/hydrosilylation employing HSiMe₂OTMS was significantly diminished relative to HSiEt₃. For example, the reaction of 4,4-bis(trimethylacetoxymethyl)-1,6-heptadiene (2) with HSiEt₃ catalyzed by $1/NaBAr_4$ formed carbocycle 3 with 91% ee, while the reaction of 2 with HSiMe₂OTMS in the presence of $1/NaBAr_4$ formed carbocycle 4 with only 82% ee (Table 1, entries 1 and 2). Therefore, we sought to identify a silane which would give high enantioselectivity in asymmetric cyclization/hydrosilylation to form silvlated carbocycles which would be reactive towards oxidation. Here we report that 1-tert-butyl-3,3-dimethyl-1,1-diphenyldisiloxane (HSiMe₂OTBDPS) serves as an effective silane for the asymmetric cyclization/hydrosilylation/oxidation of 1,6-dienes, generating (hydroxymethyl)cyclopentanes with up to 95% ee.

0040-4039/00/\$ - see front matter @ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01321-6

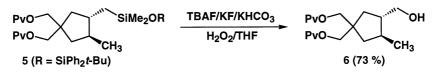

^{*} Corresponding author.

 Table 1

 Asymmetric cyclization/hydrosilylation of 2 catalyzed by a 1:1 mixture of 1 and NaBAr₄ (5 mol%) as a function of silane

The reaction of **2** and excess of $HSiMe_2OTBDPS^5$ catalyzed by a 1:1 mixture of **1** and NaBAr₄ (5 mol%) in CH₂Cl₂ at -20°C for 12 h led to the isolation of silylated carbocycle **5** in 99% yield with >95% de and 95% ee (Table 1, entry 3).⁶ Unfortunately, carbocycle **5** failed to oxidize under the conditions previously employed for oxidation of the -SiMe₂OTMS group (KF/AcOOH, 25°C, 48 h)⁴ and an alternative procedure was therefore required.⁷ To this end, the reaction of **5** with a mixture of TBAF, KF, KHCO₃, and 50% H₂O₂ in THF at room temperature for 3 days led to the isolation of alcohol **6** in 73% yield (Scheme 1).⁸ In addition to diene **2**, a range of functionalized 1,6-dienes underwent asymmetric cyclization/hydrosilylation/ oxidation employing HSiMe₂OTBDPS to give (hydroxymethyl)cyclopentanes in moderate to good yield with high enantioselectivity (Table 2).

Scheme 1.

In summary, HSiMe₂OTBDPS reacts with functionalized 1,6-dienes in the presence of $1/NaBAr_4$ to form silvlated carbocycles with up to 95% ee. These silvlated carbocycles undergo oxidative cleavage of the C–Si bond with H₂O₂ at room temperature. The significant enhancement of the enantioselectivity of palladium-catalyzed cyclization/hydrosilylation employing HSiMe₂OTBDPS relative to HSiEt₃ and HSiMe₂OTMS suggests that HSiMe₂OTBDPS may be of general use in catalytic asymmetric hydrosilylation. We are currently working towards the development of more effective procedures for oxidation of the –SiMe₂OTBDPS group.

Table 2

Asymmetric cyclization/hydrosilylation of dienes employing HSiMe₂OTBDPS catalyzed by a 1:1 mixture of 1 and NaBAr₄ (5 mol%) in CH₂Cl₂ at -20° C for 12 h, followed by oxidation with excess TBAF, KF, KHCO₃, and 50% H₂O₂ in THF at room temperature for 3 days

		yield (%)		de	ee
diene	carbocycle	$(X = SiR_3)^a$	(X = OH) ^b	(%) ^c	(%)
$E_{E} = CO_2 Me$	E Me	99	48	>50:1	90 ^d
RO RO	RO NO ME	ĸ			
R = Bn		82	76	>50:1	94 ^e
R = Me		79	76	>50:1	85 ^f
RO RO	RO WILL X	le			
R = Pv		92	71	39:1	89 ^e
OR Ph ^{ore}	Ph Me				
R = Pv		90	69	1.3:1	92 ^{e,g}
R = Me		85	70	1.5:1	91 ^{e,g}

^aYield of cyclization/hydrosilylation. ^bYield of oxidation. ^cIsomer ratio determined by capillary GC. ^dEnantiomeric excess determined by ¹H NMR analysis employing Eu(hfc)₃ as a chiral shift reagent. ^eEnantiomeric excess determined by ¹⁹F NMR of the corresponding Mosher ester. ^fEnantiomeric excess determined by chiral GC. ^gEnantiomeric excess of major diastereomer.

Acknowledgements

This work was supported by grants from the National Institutes of Health (GM59830-01) and the donors of the Petroleum Research Fund, administered by the American Chemical Society (33131-G1). R.W. thanks the Camille and Henry Dreyfus Foundation and DuPont for new faculty awards and the Alfred P. Sloan Foundation for a research fellowship.

References

- (a) Widenhoefer, R. A.; DeCarli, M. A. J. Am. Chem. Soc. 1998, 120, 3805. (b) Stengone, C. N.; Widenhoefer, R. A. Tetrahedron Lett. 1999, 40, 1451. (c) Widenhoefer, R. A.; Stengone, C. N. J. Org. Chem. 1999, 64, 8681. (d) Widenhoefer, R. A.; Vadehra, A. Tetrahedron Lett. 1999, 40, 8499.
- (a) Perch, N. S.; Widenhoefer, R. A. J. Am. Chem. Soc. 1999, 121, 6960. (b) Perch, N. S.; Pei, T.; Widenhoefer, R. A. J. Org. Chem. 2000, 65, 3836.
- 3. Jones, G. R.; Landais, Y. Tetrahedron 1996, 52, 7599.
- 4. Pei, T.; Widenhoefer, R. A. Org. Lett. 2000, 2, 1469.
- 5. Synthesis of HSiMe₂OTBDPS. Saturated aqueous NaHCO₃ (120 mL) was added to a solution of TBDPSCI (13.0 mL, 50.0 mmol) and dimethylchlorosilane (16.6 mL, 150.0 mmol) in THF (120 mL) at 0°C, the mixture was warmed slowly to room temperature, and stirred overnight. Work-up and chromatography gave HSiMe₂OTBDPS (12.6 g, 80%) as a colorless oil. ¹H NMR: δ 7.69–7.66 (m, 4H), 7.42–7.36 (m, 6H), 4.97 (septet, *J*=2.8 Hz, 1H), 1.06 (s, 9H), 0.27 (s, 3H), 0.26 (s, 3H). ¹³C{¹H} NMR: δ 136.1, 135.2, 129.7, 127.9, 27.0, 19.7, 1.4.

7600

- 6. Synthesis of **5**. Diene **2** (172 mg, 0.53 mmol) and HSiMe₂OTBDPS (0.50 g, 1.60 mmol) were added sequentially to a solution of **1** (11 mg, 0.03 mmol) and NaBAr₄ (27 mg, 0.03 mmol) in CH₂Cl₂ (6 mL) under nitrogen at -20°C and maintained at this temperature for 12 h. Evaporation of solvent and chromatography gave **5** as a colorless oil (335 mg, 99%). ¹H NMR: δ 7.68-7.61 (m, 4H), 7.40-7.30 (m, 6H), 3.86-3.82 (m, 4H), 1.78 (dd, *J*=6.8, 13.2 Hz, 1H), 1.69 (dd, *J*=6.8, 13.2 Hz, 1H), 1.43-1.26 (m, 2H), 1.17 (s, 9H), 1.16 (s, 9H), 1.03 (s, 9H), 0.99-0.93 (m, 3H), 0.85 (d, *J*=6.0 Hz, 3H), 0.30 (dd, *J*=11.0, 14.6 Hz, 1H), 0.10 (s, 3H), 0.09 (s, 3H). ¹³C{¹H} NMR: δ 178.8, 178.7, 136.2, 135.4, 129.7, 127.8, 68.5, 44.0, 43.4, 42.4, 41.8, 41.0, 39.2, 27.5, 27.1, 22.9, 19.5, 17.7, 2.0, 1.6.
- The following conditions also failed to oxidize the -SiMe₂OTBDPS group: (1) AcOOH/DMF/KF/25°C; (2) AcOOH/AcOH/HgOAc₂/25°C; (3) AcOOH/DMF/KHF₂/25°C; (4) *t*-BuOOH/CsOH/DMF/TBAF/25°C; (5) AcOOH/Py-HF/DMF/KF/25°C.
- Synthesis of 6.⁴ A suspension of 5 (364 mg, 0.57 mmol), TBAF (1.0 M in THF, 5.0 mL, 5 mmol), KF (410 mg, 7.0 mmol), KHCO₃ (120 mg, 1.2 mmol) and H₂O₂ (50% wt) (0.70 mL, 12.0 mmol) was stirred at room temperature for 3 days. Water/EtOAc work-up, followed by chromatography gave 6 (143 mg, 73%) as a colorless oil.